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We study a simple sandpile model of active-absorbing state transitions in which a particle can hop out of a
site only if the number of particles at that site is above a certain threshold. We show that the active phase has
product measure whereas nontrivial correlations are found numerically in the absorbing phase. It is argued that
the system relaxes to the latter phase slower than exponentially. The critical behavior of this model is found to
be different from that of the other known universality classes.
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I. INTRODUCTION

Active-absorbing state transitions form an important class
of nonequilibrium phase transitions whose best studied ex-
ample is directed percolation �DP� �1�. A critical behavior
different from DP is possible in the presence of additional
symmetries as in parity-conserving DP �2�. Sandpile models
in which the activity occurs when the local density exceeds a
certain threshold can also exhibit such transitions, provided
the total density �“energy”� is conserved �3�. Depending on
the nature of the coupling between the activity and the local
density, the conservation law may �4� or may not �5� change
the critical behavior from DP. Further, the non-DP behavior
can belong to different universality classes such as conserved
DP �C-DP�, which describes stochastic sandpiles with linear
coupling �6,7�.

The models mentioned above have resisted an exact solu-
tion so far and have been studied extensively using numeri-
cal simulations and field-theoretic techniques. In this article,
we introduce and study the steady state and the dynamics of
a simple fixed energy sandpile model �FESM� for which
some exact results can be found. As we shall see, the critical
behavior of this model is different from that of the other
known classes of FESMs.

In Sec. II, we define the model and study its steady state.
In our model, only one particle hops out of a site to a nearest
neighbor if the number of particles at that site exceeds a
certain threshold. In the high-density active phase, this
model defines a zero range process �ZRP� whose steady state
is known to be of product measure form in all dimensions
�8,9�. In the low-density absorbing phase, the steady state is
not unique and depends on the initial conditions. We deter-
mine the critical behavior of this model by studying an order
parameter and a correlation function close to the critical den-
sity. The time-dependent properties of this model are de-
scribed in Sec. III. We argue that the relaxation dynamics are
the same as that of a two-species annihilation process; in
particular, we find a stretched exponential decay in the inac-
tive phase, which has been seen numerically in other sand-
piles also �10�. Our arguments are supported by Monte Carlo
simulations.

II. THE MODEL AND ITS STEADY STATE

The model is defined on a d-dimensional hypercubic lat-
tice of length L with periodic boundary conditions. Each site

can hold an arbitrary number of particles with unit mass. We
call a site active if the mass at this site is greater than mthr,
otherwise it is called inactive. A particle hops out of an ac-
tive site to a nearest neighbor with equal probability. In con-
tinuous time, the hopping rate u�m� at a site having m par-
ticles is given by

u�m� = �1/2d, m � mthr,

0, m � mthr.
� �1�

The dynamics conserve the total density �=M /V where M is
the total number of particles in the system and V�Ld is the
volume of the system. In one dimension with mthr=1, this
model can be mapped to a conserved lattice gas �CLG�
model by regarding the sites as holes and mass as particle
clusters. In the CLG language, a particle with one occupied
neighbor can only hop to an empty nearest neighbor whereas
the isolated particles do not move �11�.

To see the phase transition, we define all the particles at a
site to be immobile if the mass m�mthr at this site. For m
�mthr, the first mthr particles are said to be immobile and the
rest m−mthr mobile. If the initial number of particles is less
than mthrV, a mobile particle diffuses around till it reaches a
site with m�mthr whereupon it becomes immobile. Thus, the
number of mobile particles eventually becomes zero. On the
other hand, if the total number of particles in the initial state
exceeds mthrV, then the number of mobile particles decreases
until it reaches M −mthrV. Thus, there is a phase transition at
the critical density �c=mthr from an inactive phase with only
immobile particles to an active one with a finite number of
mobile particles, as the total density is increased. For sake of
simplicity, we choose mthr=1 in the following discussion.

A. The active phase

We first note that the probability Pk�0, t� of having m=0
at site k at time t is a monotonically decreasing function in
time since

�Pk�0,t�
�t

= −
1

2d
�

�
�

m�2
Pk,k+��0,m,t� , �2�

where Pk,k+��m� ,m , t� is the joint probability that the site k
and its neighbor k+� have mass m� and m, respectively, at
time t. In the active phase, since ��1, it follows that the
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probability P�0� of having an empty site is zero. It is then
easy to check that the condition of detailed balance holds
with the steady-state distribution P�C�	m1 ,… ,mV
� being
equally likely. Since the number of ways in which M −V

particles can be partitioned in V cells is given by Z= �M−1

V−1 �
�12�, we have P�C�=1/Z. Using a similar reasoning, the

mass distribution P�m�= �M−m−1

V−2 � /Z can be obtained. Thus,

the activity S=�m�2P�m�= �M −V� / �M −1�. Near the critical
point, S���−�c�	 with 	=1 in all dimensions. Intuitively, as
�→�+1/V, due to the absence of empty sites, the newly
added particle typically becomes a mobile particle, leading to
a linear growth of activity. This argument fails for the models
studied in �4� in which more than one particle can leave an
active site, thus creating empty sites. In such cases, one may
expect the activity to grow nonlinearly.

Since P�0�=0 for our model, the exponent 	 is expected
to be unity even if u�m� is mass dependent for m�mthr. This
can be shown by realizing that the active phase is a special
case of ZRP for which P�C���k=1

V f�mk� where the marginal
f�mk� is given by

f�mk� = �
nk=2

mk

1/u�nk�, mk � 2,

1, mk = 0,1.
� �3�

The distribution P�m�=vmf�m� /Z is obtained by using the
measure P�C� above with fixed density constraint. Here the
normalization constant Z=
m�1vmf�m� and the fugacity v is
determined by the conserved particle number condition
which can be written as

� − 1 =
1

Z
�

m�2
�m − 1�vmf�m� . �4�

Close to the critical density, the fugacity v→0 and we can
approximate �−1 by the first term in the sum above. Using
this in the expression for the activity S=�m�2vmf�m� /Z for
v→0, it follows that 	=1.

Typically, the density-density correlation function
C�r ,��= �m0mr�−�2 decays exponentially with r and can be
used to define a static correlation length ����−�c�−��. Since
this phase has product measure, the correlation function
C�r ,�� is zero in the thermodynamic limit for all r. This
implies that the correlation length ��=0 and the exponent ��

�

is undefined in this phase.

B. The inactive phase and the critical point

For ���c, the system is in the inactive phase and the

number of absorbing states is given by � V

M �. Unlike the active

phase, here the steady state is neither unique nor has product
measure even if the initial state has. To see this, let us pre-
pare an initial state in which a site is occupied by a monomer
with probability p1, a dimer with probability p2, and remains
empty with p0=1− p1− p2. Then, for p1=0, the final state will

have one-clusters with only an even number of ones,
whereas, for p1�0, the configurations with an odd number
of ones are also allowed. Thus different initial conditions
give different solutions for P�C� so that the steady state is
not unique. Further, this is clearly not a product measure
state for which the weight of all configurations at a fixed
density is same.

Using Monte Carlo simulations in one dimension, we
measured the correlation function C�r ,��= �m0mr�−�2 where
m is either 0 or 1. Since the steady state depends on the
initial condition, the angular brackets denote spatial averag-
ing for a given initial condition. We initially distribute par-
ticles independently at each site with the mass chosen from a
Poisson distribution. As shown in Fig. 1, the behavior of the
correlation function C�r ,�� when averaged over such initial
conditions is similar to when only spatial averaging is done
for a fixed initial configuration. Therefore, in the following
discussion, we will carry out ensemble averaging as well.

The data in the inset of Fig. 2 for C�r ,�� at various den-
sities for a large, one-dimensional system supports the claim
that the product measure does not hold in this phase. For

FIG. 1. Plot of C�r ,�� vs r for ���c in one dimension with
Poisson distributed initial mass. The data shown with points corre-
sponds to different initial seeds for the random number generator.
The data averaged over 1000 initial conditions is shown with bro-
ken line.

FIG. 2. Inset: Plot of C�r ,�� vs r in one dimension for ���c

with L=16 384 to show that the product measure does not hold in
the inactive phase. Main: Data collapse for the scaled correlation
function �C�r ,�� vs. r /� with �= �1−��−2.
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densities away from unity, the correlation function decays
fast and as one approaches the critical point, the decay gets
slower. The magnitude of C�r ,�� at small r drops for �→1
since, at the critical density, we must obtain C�r ,�c�=0.
Also, since the total mass is conserved, we have

�Mm0� = L�2 = �m0
2� + �m0m1� + ¯ + �m0mL−1� . �5�

Thus, the correlation function obeys the sum rule �rC�r ,��
=0 due to which C�r ,�� is not positive for all r. Finally, as
shown in Fig. 2, a data collapse forC�r ,�� for densities close
to the critical density can be obtained if we assume

C�r,�� � ��
−1g�r/���, �� = �1 − ��−2. �6�

The above scaling form is consistent with vanishing C�r ,��
at the critical point. Thus, the static correlation length ��

���c−��−��
�

diverges at the critical point with exponent ��
�

�2.

III. TIME-DEPENDENT BEHAVIOR

Starting from an initial state in which particles are Pois-
son distributed, we study the temporal decay of the activity
at and below the critical point. The activity S�t� at time t
obeys the following equation:

�S�t�
�t

=
1

2d
�

�
� �

m�2
Pk,k+��1,m,t� − �

m�1
Pk,k+��2,m,t�

− Pk,k+��2,0,t�� . �7�

The first term on the right-hand side �RHS� represents the
gain in the activity when a particle hops out of an active site
to an inactive site, whereas the last two loss terms corre-
spond to a particle leaving an active site with two particles.
At low densities, since the probability of having large mass
is exponentially small, the first two terms on the RHS of Eq.
�7� can be ignored and S�t� can be approximated by P�2, t�.
Denoting m=0 by A ,m=1 by , and m=2 by B, the last term
describes a two-species annihilation reaction A+B→
where A is a static and B is a diffusing species. A similar
mapping to reaction-diffusion system for the models in �4�
involves more complicated reactions due to the creation of
empty sites. In the following, we will denote the number of
species A and B at time t by nA�t� and nB�t�, respectively.

At the critical density �c=1, we expect that nB�0�
�nA�0� and in a finite domain of length �, they differ by
±O��d/2�. Since the species B performs diffusive random
walk, at large times in an infinite system, we have �13�

S��c
�,t� � �t−d/4, d � 4,

t−1, d � 4,
� �8�

where �c
� refers to the critical density in the thermodynamic

limit. For a finite system of size L, the activity S at density
�c

� is expected to be of the scaling form,

S��c
�,t,L� � t−�H�t/Lz� , �9�

where the scaling function H�x� is a constant for x�1 and
grows as x� for x�1 �4�. In other words, the activity typi-

cally decays as a power law in time to a system-size-
dependent constant L−z�. As shown in Fig. 3, in one dimen-
sion, the activity S is of the scaling form in Eq. �9� with z
�2 and the exponent � given by Eq. �8�. However, the scal-
ing function H�x� decays exponentially for x�1 as seen by
the linear decay of scaled activity on the semilog scale in
Fig. 3. In two dimensions, our simulations support the scal-
ing behavior Eq. �9� with the scaling function decaying as a
stretched exponential. The finite size scaling of the activity
S�L−z� in the steady state does not hold since the exact
expression for S= �M −V� / �M −1� gives �c=1 for any L �un-
like other sandpiles where �c is expected to be size depen-
dent�.

For ���c, we expect nB�0��nA�0� so that nA does not
change appreciably due to the annihilation reaction and we
are led to consider the problem of diffusing B species in the
presence of static traps A. In this case, at large times, the
density S�t� decays as a stretched exponential �14�,

S�t� � exp�− �t/td���, for � � �c, �10�

where �=d / �d+2� and td��1−��−2/d. This slow decay arises
due to large trap-free regions which are rare but enhance
survival significantly. The inset of Fig. 3 shows the decay of
S�t� in one dimension in accordance with Eq. �10�. This be-
havior of slow relaxation to the steady state is similar to that
observed numerically in various stochastic FESMs in �10�.

We next consider the effect of a perturbation in the steady
state by considering the correlation function G�r� , t�
= ���0,0���r� , t�� where ��r� , t� is one if the site r� is active at
time t and zero otherwise. We perturb the steady state by
constructing an initial condition with a single mobile particle
placed at the origin. At the critical point, this particle ex-
ecutes a random walk and the correlation function G�r� , t� is
equal to the probability that the walker is at �r� , t� so that

G��c,r,t� �
1

�2�t�d/2exp�− r2/2t� . �11�

In the absorbing phase, there is a finite density 1−� of the
vacant sites and the typical distance r0 between them scales
as �1−��−1/d. Therefore, the single mobile particle at the ori-

FIG. 3. Data collapse for the scaled activity t1/4S�t ,L� vs t /L2 at
�=�c in 1d in accordance with Eq. �9�. The inset shows the tempo-
ral decay of S�t� for ���c as in Eq. �10�.

BRIEF REPORTS PHYSICAL REVIEW E 72, 017105 �2005�

017105-3



gin diffuses for t�r0
2 so that the correlation function

G�r� , t��e−r2/2t ,r�r0, increases with time. However, for t
�r0

2, the mobile particle gets trapped and G�r� , t� decays as in
Eq. �10�. Usually, the autocorrelation function G�0, t� is ex-
pected to decay exponentially, i.e., G�0, t��e−t/� where �
���c−��−�� and the exponent �� obeys the scaling relation
�� =��z �1�. The stretched exponential behavior of G�0, t� in
our model implies that ��

� is infinite. Alternatively, one can

define this exponent via td���c−��−��
�

with ��
�=2/d. Since,

in our model, z�2 and the correlation length exponent ��
�

�2 in one dimension, either definition of ��
� is inconsistent

with the above scaling relation and we conclude that it does
not hold in the absorbing phase.

IV. CONCLUSION

We introduced a sandpile model whose simplicity allowed
us to determine various static and dynamic exponents ex-
actly. These exponents differ from those of the C-DP class
for which, in one dimension, 	�0.29,��

��1.33,z�1.55,
and ��0.14 �7�. We considered the correlation lengths ��

and �� defined above and below the critical density, respec-
tively, and found that while �� is zero, �� diverges as �

→�c−. However, a further detailed study of the nontrivial
correlations present in the inactive phase would be interest-
ing. We also studied the temporal properties of this system
by relating it to a well-studied reaction-diffusion system via
an argument similar to that used in �15� to study avalanche
size distribution in a sandpile model.

One can also consider the biased version of the above
model in which a particle moves preferentially to a nearest
neighbor. The steady state of this model is the same as that
for the symmetric case discussed above. For the asymmetric
case, using the known results for the two-species annihilation
problem with the B species drifting with a nonzero speed, we
expect that at the critical point, S�t� decays as a power law
with an exponent d /2 for d�2 and exponentially in the sub-
critical regime �16�. Our numerical results are consistent
with the argument.
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